A New Adaptive High-Degree Unscented Kalman Filter with Unknown Process Noise
نویسندگان
چکیده
Vehicle state, including location and motion information, plays an essential role on the Internet of Vehicles (IoV). Accurately obtaining system state information is premise realizing precise control. However, statistics process noise are often unknown due to complex physical process. It challenging estimate when unknown. This paper proposes a new adaptive high-degree unscented Kalman filter based improved Sage–Husa algorithm. First, traditional algorithm using transform. A estimator suitable for obtained noise. Then, designed improve accuracy stability estimation system. Finally, target tracking simulation results verify proposed algorithm’s effectiveness.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملA Hybrid Adaptive Unscented Kalman Filter Algorithm
In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for statement and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value...
متن کاملFuzzy Adaptive Variational Bayesian Unscented Kalman Filter
We consider the problem of nonlinear filtering under the circumstance of unknown covariance statistic of the measurement noise. A novel adaptive unscented Kalman filter (UKF) integrating variational Bayesian methods and fuzzy logic techniques is proposed in this paper. It is called fuzzy adaptive variational Bayesian UKF (FAVBUKF). Firstly, the sufficient statistics of the measurement noise var...
متن کاملA new unscented Kalman filter with higher order moment-matching
This paper is concerned with filtering nonlinear multivariate time series. A new approximate Bayesian algorithm is proposed which generates sample points and corresponding probability weights that match exactly the predicted values of average marginal skewness and average marginal kurtosis of the unobserved state variables, in addition to matching their mean and the covariance matrix. The perfo...
متن کاملThe Unscented Kalman Filter
In this book, the extended Kalman filter (EKF) has been used as the standard technique for performing recursive nonlinear estimation. The EKF algorithm, however, provides only an approximation to optimal nonlinear estimation. In this chapter, we point out the underlying assumptions and flaws in the EKF, and present an alternative filter with performance superior to that of the EKF. This algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2022
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics11121863